A Credibilistic Mixed Integer Programming Model for Time-Dependent Hazardous Materials Vehicle Routing Problem

نویسندگان

  • Hao Hu
  • Sini Guo
  • Hongguang Ma
  • Jian Li
  • Xiang Li
چکیده

Hazardous materials are harmful to environment and human health due to their toxic ingredients. It is very important to intensify efforts in the safety management of hazardous materials, and fundamentally prevent and reduce accidents. In this study, we consider a time-dependent hazardous materials vehicle routing problem in a two-echelon supply chain system. The goal is to determine the departure time and the optimal route with a minimum risk value for hazardous materials transportation. Considering that time has a significant influence on the transportation risk, we formulate a time-dependent transportation risk model and propose a credibilistic mixed integer programming model to minimize the expected risk. An improved genetic algorithm whose chromosomes contain two types of genes is designed to handle the proposed model. Numerical experiment is given to illustrate the efficiency of the proposed model and algorithm. Compared with the traditional transportation risk model, the time-dependent transportation risk model can significantly reduce the risk around 42%. c ©2017 World Academic Press, UK. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mixed Integer Programming Formulation for the Heterogeneous Fixed Fleet Open Vehicle Routing Problem

The heterogeneous fixed fleet open vehicle routing problem (HFFOVRP) is one of the most significant extension problems of the open vehicle routing problem (OVRP). The HFFOVRP is the problem of designing collection routes to a number of predefined nodes by a fixed fleet number of vehicles with various capacities and related costs. In this problem, the vehicle doesn’t return to the depot after se...

متن کامل

Comparing Two-Echelon and Single-Echelon Multi-Objective Capacitated Vehicle Routing Problems

This paper aims to compare a two-echelon and a single-echelon distribution system. A mathematical model for the Single-Echelon Capacitated Vehicle Routing Problem (SE-CVRP) is proposed. This SE-CVRP is the counterpart of Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP) introduced in the authors’ previous work. The proposed mathematical model is Mixed-Integer Non-Linear Programming (MIN...

متن کامل

A mixed integer linear programming formulation for a multi-stage, multi-Product, multi-vehicle aggregate production-distribution planning problem

In today’s competitive market place, companies seek an efficient structure of supply chain so as to provide customers with highest value and achieve competitive advantage. This requires a broader perspective than just the borders of an individual company during a supply chain. This paper investigates an aggregate production planning problem integrated with distribution issues in a supply chain ...

متن کامل

A green vehicle routing problem with customer satisfaction criteria

This paper develops an MILP model, named Satisfactory-Green Vehicle Routing Problem. It consists of routing a heterogeneous fleet of vehicles in order to serve a set of customers within predefined time windows. In this model in addition to the traditional objective of the VRP, both the pollution and customers’ satisfaction have been taken into account. Meanwhile, the introduced model prepares a...

متن کامل

A fuzzy mixed-integer goal programming model for a parallel machine scheduling problem with sequence-dependent setup times and release dates

This paper presents a new mixed-integer goal programming (MIGP) model for a parallel machine scheduling problem with sequence-dependent setup times and release dates. Two objectives are considered in the model to minimize the total weighted flow time and the total weighted tardiness simultaneously. Due to the com-plexity of the above model and uncertainty involved in real-world scheduling probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017